Intracellular ferriprotoporphyrin IX is a lytic agent.
نویسندگان
چکیده
Human erythrocytes were treated with menadione to oxidatively denature hemoglobin and release ferriprotoporphyrin IX (ferriheme, FP) intracellularly. The high affinity of FP for chloroquine was used to detect its release. After incubation for 1 hr at 37 degrees C and pH 7.4 with 0.5 mM menadione, erythrocytes bound 14C-chloroquine with an apparent dissociation constant of 10(-6)M. Untreated erythrocytes did not bind chloroquine with high affinity. At a chloroquine concentration in the medium of 2 microM, for example, menadione-treated erythrocytes bound 70 mumole chloroquine/kg and untreated erythrocytes bound 13.4 mumole/kg. The intracellular location of FP released by menadione was verified by finding that Tween 80 did not prevent chloroquine binding. By contrast, Tween 80 inhibited the binding of chloroquine to erythrocytes treated with extracellular FP. The hemolytic response to menadione was characteristic of the hemolytic response to FP. Thus, 5 microM chloroquine caused hemolysis to increase to 60% from baseline values of 5% in experiments using erythrocytes treated either with 0.5 mM menadione or with 5 microM FP; and, in both cases, the potentiating effect of chloroquine was inhibited by 1 microM mefloquine or 10 microM quinine. Higher concentrations of menadione caused hemolysis in the absence of chloroquine. We conclude that FP released by menadione exists intracellularly in a form that is accessible to bind chloroquine and to express its lytic activity.
منابع مشابه
Intracellular Ferriprotoporphyrin IX Is
Human erythrocytes were treated with menadione to oxidatively denature hemoglobin and release ferriprotoporphyrin IX (ferriheme, FP) intracellularly. The high affinity of FP for chloroquine was used to detect its release. After incubation for 1 hr at 37’C and pH 7.4 with 0.5 mM menadione, erythrocytes bound 14C-chloroquine with an apparent dissociation constant of 1O M. Untreated erythrocytes d...
متن کاملEffect of replacement of ferriprotoporphyrin IX in the haem domain of cytochrome P-450 BM-3 on substrate binding and catalytic activity.
Bacillus megaterium cytochrome P-450 BM-3 (coded by gene CYP102) is a catalytically self-sufficient mono-oxygenase, with both cytochrome P-450 and NADPH:cytochrome P-450 reductase domains, that catalyses the hydroxylation of fatty acids. The natural ferriprotoporphyrin IX has been removed from the haem domain of cytochrome P-450 BM-3 by treatment with acidified acetone, and it has been shown th...
متن کاملMechanism of hemolysis induced by ferriprotoporphyrin IX.
Incubation of a 0.5% suspension of washed, normal mouse erythrocytes with ferriprotoporphyrin IX (FP) at 37 degrees C and pH 7.4 caused potassium loss, swelling, increased susceptibility to hypotonic lysis, and finally hemolysis. Hemolysis was not inhibited by incubation in the dark, malonyldialdehyde was not produced, and various free radical scavengers had no effect on the hemolysis. Only the...
متن کاملHemolysis of mouse erythrocytes by ferriprotoporphyrin IX and chloroquine. Chemotherapeutic implications.
Incubation of a 0.5% suspension of washed normal mouse erythrocytes with ferriprotoporphyrin IX (FP) for 2.5 h at 37 degrees C and pH 7.4 results in sufficient membrane damage to produce hemolysis. A sigmoidal dose-response curve is followed with 50% hemolysis being produced by 4 microM FP. Complete hemolysis is produced by 6 microM FP. The hemolytic process has at least two phases: a lag phase...
متن کاملRegulation of human erythrocyte glyceraldehyde-3-phosphate dehydrogenase by ferriprotoporphyrin IX.
Erythrocyte glyceraldehyde-3-phosphate dehydrogenase (G3PD) is a glycolytic enzyme containing critical thiol groups and whose activity is reversibly inhibited by binding to the cell membrane. Here, we demonstrate that the insertion of ferriprotoporphyrin IX (FP) into the red cell membranes exerts two opposite effects on membrane bound G3PD. First, the enzyme is partially inactivated through oxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 62 6 شماره
صفحات -
تاریخ انتشار 1983